1 The Central Dogma of Molecular Biology

Mark Mayo Cypress College

² The Central Dogma of Molecular Biology

3 <a>Importance of Proteins

- There are three main kinds:
 - structural make up most body parts
 - hormone chemical that controls the body
 - enzyme catalyst speeds up chemical reactions

4 Importance of Proteins

- Without proteins there would be no life
- All cells make proteins
- Proteins in your body make up your:
 - Hair
 - Nails
 - Muscles
 - Skin
 - Cartilage

5 Discovery of DNA

(deoxyribonucleic acid)

- 1953 Watson, Crick and Wilkins determined the structure of DNA to be a double helix
- They won a Nobel Prize for their work

6 Structure of the DNA molecule

- DNA is shaped like a double helix
- It is like a spiral staircase
- Another way to think of it is a twisted ladder

7 Connecting the DNA molecule

- Rails* of the DNA ladder are alternating sugar & phosphates
- Rungs* are composed of pairs of bases
 - A bonds with T*
 - G bonds with C*

S Connecting the DNA Molecule

■ The DNA Ladder*

9 Connecting the DNA molecule

- The two strands of DNA are different
- One is called the sense strand and it is the plan to make a protein
- The other strand is the antisense strand and it is only used for protection of the

sense strand

10 Connecting the DNA molecule

- The two strands of DNA are said to be antiparallel*
- One strand is oriented in a 5' to 3' direction*
- The other strand is oriented in the opposite 3' to 5' direction*

11 Connecting the DNA molecule

 Nucleotides are units composed of a base, phosphate and a sugar

12 Connecting the DNA molecule

■ The two strands of DNA bases are connected by weak forces called hydrogen bonds*

13 Components of DNA

■ Phosphate

14 Components of DNA

■ Deoxyribose (sugar)

15 Components of DNA

- DNA bases
- (4 different types)
- Adenine
- Thymine*
- Guanine
- Cytosine

16 Components of DNA

- Proteins are attached to the DNA helix in cells
- These proteins are known as histones
- They assist in DNA storage

17 DNA and RNA Compared

- 1 DNA
 - Found only in nucleus*
 - Double stranded helix
 - Bases = ATGC*
 - Sugar = Deoxyribose
- 2 **RNA**
 - Found in ribosomes, nucleolus*
 - Single stranded helix *
 - Bases = AUGC (URACIL) *
 - Sugar = Ribose

18 Replication of DNA

- Replication the making of an exact copy of the DNA molecule
 - Replication occurs whenever a cell divides
 - The copy must be 100% accurate (errors = death possibly)

- Replication practice (find the complimentary bases or base sequence)*
 - A pairs with?
 - T pairs with?
 - G pairs with ?
 - C pairs with ?

19 Replication of DNA

20 Stages in replication (basic)

- DNA molecule is split in two at the end by the work of enzymes *
- DNA unzips slightly and the two strands unwind *
- new nucleotides attach to the free ends * (A-T, G-C)
- more DNA unzips
- more nucleotides attach *
- process continues until completed
- result is two (2) double strands of DNA
- each strand is 50% new and 50% old DNA

21 Stages in replication

22 Stages in replication

■ DNA replication is different on the leading and lagging strands *

23 Enzymes * Involved in DNA Replication

- DNA polymerase adds nucleotides in a 5' to 3' direction
- Topoisomerase
- Gyrase
- RNA primase
- DNA ligase connects the gaps in the lagging strand

24 DNA

Replication

in Motion

25 Introns and Exons

- Introns sequences in the DNA that are NOT used to make mRNA or to make a protein. They are NOT transcribed *
- Exons sequences in the DNA that are expressed or used to make mRNA and ultimately are used to make a protein

26 Introns and Exons

27 Restriction Enzymes

- Restriction enzymes (also known as restriction endonucleases) recognize specific DNA sequences and CLEAVE or cut the DNA into pieces *
- Generally these cuts occur in a manner which leaves a sticky end of single strand DNA
- These pieces can be separated by using gel electrophoresis (this is like electronic chromatography)
- We use restriction enzymes for cutting bacterial, viral or even human DNA and later insertion of the desired DNA fragments called gene splicing *

- 28 Restriction Enzymes
- 29 Restriction Enzymes
- 30 Ribonucleic Acid (RNA)
 - Three types of RNA:
 - rRNA = ribosomal RNA makes up the ribosome
 - mRNA = messenger RNA is the message from DNA for the construction of the new protein molecule *
 - tRNA = transfer RNA carries amino acids to ribosomes
- 31 Ribonucleic Acid (RNA)
 - Ribosomal RNA is used to make a ribosome
 - The ribosome "reads" the mRNA plan for the new protein
 - mRNA is the set of directions for a new protein*
- 32 Ribonucleic Acid (RNA)
 - Messenger RNA
- 33 Ribonucleic Acid (RNA)
 - Transfer RNA
 - Each tRNA holds one amino acid
 - Every tRNA has a special region called the anti-codon (3 bases)
 - An tRNA anti-codon "mates" with codon on the mRNA molecule
 - There are 61 different tRNA molecules, yet only about 20 amino acids (hint: 3 stop codons)
- 34 Ribonucleic Acid (RNA)
 - Transfer RNA
- 35 Transcription
 - Transcription is the special copying of one side of the DNA molecule (the sense strand) that results in the production of a single strand of RNA *
 - The original DNA is not changed
 - This process can be repeated
 - The amount of DNA that is transcribed is usually one gene
- 36 Transcription
 - Process of Transcription
 - DNA is unzipped by an enzyme
 - Only one side fills with RNA nucleotides by the action of another enzyme RNA polymerase
 - A-U, G-C (NO THYMINE = T)
 - As the RNA strand separates the DNA strands reattach as before the process started
 - 4. The result is the original DNA plus a new RNA strand
- 37 Transcription

38	Transcription ■ Uracil – a base only found in RNA
39	Transcription Transcription Practice * A (in DNA) pairs with in RNA T (in DNA) pairs with in RNA G (in DNA) pairs with in RNA C (in DNA) pairs with in RNA
40	Transcription
41	Transcription
42	 Translation ■ Translation * is the reading of the RNA code, by ribosomes, to make proteins * or polypeptides ■ Translation is often called protein synthesis
43	 Translation mRNA is the message (the plan for the protein) rRNA "reads" the mRNA (the ribosome) * tRNA molecules carry amino acids to the ribosome for assembly into proteins The ribosome allows only the correct tRNA to add its amino acid – others are rejected
44	Translation *
45	Translation
46	Translation ■ Triplet codons -groups of three bases on mRNA that code for specific amino acids *
47	 Translation ■ The function of special stop codons is to terminate* or end the translation process* ■ The stop codons are: UAA, UAG and UGA
	 The function of the start codon is to serve as a place for the ribosome to begin translation The only start codon is AUG
48	Translation ■ 9 bases would give? amino acids * ■ 27 bases would give? amino acids *

49 Translation

■ Anticodon practice *

codon	anticodon
AAA	UUU
CCC	?
UUU	?
UCG	?

NEVER look up the anticodon in the chart or table!

Look the CODON in the table or chart

50 Translation