Study Guide for Midterm 1

- Monosaccharides glucose, fructose, galactose
 Disaccharides sucrose, maltose, lactose
 Polysaccharides starch (rice), glycogen (animals), cellulose (plants)
- 2. Hypotonic cytolysis = "pop", hemolysis = red blood cell popping Hypertonic – plasmolysis = "shrink", crenation = red blood cell shrinking Isotonic – nothing happens (in equilibrium)
- Smooth Endoplasmic Reticulum (ER) lipid synthesis
 Rough Endoplasmic Reticulum (ER) makes proteins for export or membrane proteins

Mitochondria - powerhouse of the cell

Cilia - locomotion

Flagella – locomotion

Chloroplasts – contains chlorophyll, the pigment needed for photosynthesis

Leucoplasts - starch storage bodies in plants

Microfilaments - provide strength and support

Lysosomes - suicide bags or sacks; digest bacteria and "foreign" material

Microtubules - used in cells division and cell movement

Golgi complex – three segments of Golgi complex (cis→medial→trans)

Cuts proteins and adds carbohydrates,

Packaging and shipping centers of the cell

4. Electrons = atomic number; negatively charged particle

Protons = atomic number; positively charged particle

Neutrons = atomic mass-atomic number; neutral charge

Atomic number – equal to the number of proton and electrons for that atom

Atomic mass – how much an atom weighs

Atomic model structure -

- 5. Ions charged atoms or molecules formed by the loss or gaining of electrons Cations (+) and Anions (-)
- 6. Proteins made up of many amino acids

Polysaccharides – complex combination of many sugars (carbohydrates)

Fluid mosaic model – every cell membrane has a mixed combination of phospholipids, glycolipids, sterols, and proteins

Cytoskeleton – composed of three main components: microfilaments, intermediate filaments, and microtubules

7. Diffusion – the passive movement of materials from an area of greater concentration to an area of lesser concentration

Osmosis – diffusion of water across a selectively permeable membrane from an area of greater concentration to an area of lesser concentration

Cytolysis - "popping"

Plasmolysis - "shrinking"

Phagocytosis – form of cell eating (large particles)

Peptide bond – forms as a condensation reaction joins the amino group of one amino acid and the carboxyl group of the next in line

pH = -log of the hydrogen concentration; a buffer is a substance that resists a change in pH

Acidity - pH 1-6.5

Neutral - pH 7

Basic - pH 7.5-14

8. Plant cells – organelles compressed toward outer edges of the cell, have chloroplasts, have a cell wall

Animal cells - organelles evenly distributed throughout cytoplasm

- 9. Integral proteins imbedded within cell, very difficult if not impossible to remove Transmembrane proteins – extends the entire length of the membrane Peripheral proteins – loosely attached to the cell membrane on the inside or the outside Transport proteins – allow the movement of materials into and out of the cell Receptor proteins – receive a signal from outside the cell and pass it inside Recognition proteins – display "self" signals to identify cells Adhesion proteins – permit cell-cell junctions
- 10. Hooke focused a microscope on thinly sliced cork and saw tiny compartments and named them "cells"

Leuwenhoek – looked at bacteria by scraping tartar off his teeth and examining it under a microscope

11. Active transport – requires energy, usually in the form of ATP, usually against a gradient

Passive transport – passive movement of materials from an area of greater concentration to an area of lesser concentration

Facilitated diffusion – diffusion across a membrane using a carrier molecule

Endocytosis – the movement of substance into the cell

Exocvtosis – the removal of substances from within the cell

Phagocytosis – form of cell eating where large particles or cells are engulfed by the white blood cell

Contractile vacuoles - used by bacterium to remove internal water

Sodium/Potassium pump (Na+ / K+) – most famous active transport, 3 Na+ go out of cell while 2 K+ enter cell

12. Magnification

Eyepiece Objective

10X 4X

multiply together ($10 \times 4 = 40X$)

Resolution

$$R = (.61 / N.A.) \times (\lambda)$$

$$N.A. = .1$$
 and $\lambda = 400$ nm

 $R = (.61/.1) \times (400 \text{nm}) = 2400 \text{nm}$

15. Enzymes – a type of protein that speeds up a chemical reaction
Substrates – a reactant molecule that is specifically acted upon by an enzyme
Enzyme optima – Enzymes require certain conditions for them to function correctly
pH effects on enzymes – pH is important to enzyme activity because it changes the
SHAPE of the enzyme

Temperature effects on enzymes - Temperature is important to enzyme function because it changes the SHAPE of the enzyme

Practice Exam Question for Midterm 1

- 1. These organelles are found in animal cells and are used primarily in the transport of materials into and out of cells; a. tonoplasts b. vacuoles c. vesicles d. plastids e. peroxisomes 2. Which cellular structure is NOT surrounded by at least one membrane?
- - a. chloroplast
 - b. nuclei
 - c. lysosome
 - d. ribosome
 - e. Golgi body
- Proteins are made of monomers (building blocks) called:
 - a. fatty acids
 - b. triglycerides
 - c. monosaccharides
 - d. peptides
 - e, amino acids
- 4. The principal storage form for sugar in higher animals is:
 - a. sucrose
 - b. starch
 - c. glucose
 - d. trehalose
 - e glycogen
- 5. What cellular structure makes it possible for a cell to differ structurally and biochemically from its surroundings?
 - a. cell wall
 - b. nucleus
 - c. endoplasmic reticulum
 - d. phospholipids
 - e cell membrane
- 6. The endoplasmic reticulum is said to be rough if it has attached:
 - a subosomes
 - b. plastids
 - c. mitochondria
 - d. vesicles
 - e. Golgi complexes

Study Guide for Midterm 1

(20 questions)

- 1. Examples of monosaccharides, disaccharides, polysaccharides
- 2. Effects of hypotonic, hypertonic and isotonic solutions on a blood cell
- 3. Functions of both kinds of E.R., mitochondria, cilia, flagella, chloroplasts, leucoplasts, microfilaments, lysosomes, microtubules, microfilaments, Golgi complex,
- 4. Electrons, protons and neutrons, atomic number, atomic mass, atomic model structure
- 5. Ions-examples and which have gained or lost electrons
- 6. Building blocks for proteins, polysaccharides, fluid mosaic model of cell membrane, cytoskeleton
- 7. Know these words: diffusion, osmosis, cytolysis, plasmolysis, phagocytosis, peptide bond, pH
- 8. Know differences between plant and animal cells
- 9. Know the different types of proteins (integral, transmembrane etc.)
- 10. People to know: Hooke, Leuwenhoek,
- 11. Know kinds of transport: active, passive, facilitated diffusion, etc.
- 12. Know how to compute magnification and resolution
- 13. Study the molecules shown in the biochemistry powerpoint handout (the ones I told you to study)
- 14. Study the cell diagram
- 15. Be sure that enzymes, substrates, enzyme optima, plus pH and temperature effects on enzymes are in your grasp.

16. Read the book carefully!